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Abstract

This position paper proposes the machine education concept, a novel point of view
for enabling trust capabilities in machine agents in the context of human-machine
teaming, via emergence of inherent systems of values solely from interaction with
environment and peers. Thus, the paper aims to generate the foundation and a
potential road-map of future research on how machine education concept can
contribute to building trust-capable machine agents within heterogeneous human-
machine teams, in order to ensure team success. (An extended version of this work
is close to submission to AI Journal. At the time of this workshop, the work will be
under review. There is some amount of overlapping content, however, a substantial
shift in position and scope exists; therefore, the two papers can be considered as
different pieces of work.)

1 Introduction

With the advent of more and more capable machine learning concepts and technologies, machine
agents are today closer to autonomous operation than ever before, and the levels of autonomy they
reach are increasing rapidly in all aspects implied by the definition of autonomy [1]. However, with
increased autonomy also comes the problem of trust capabilities of these agents, which is closely
related to and conditions their social acceptance and inclusion, as well as the overall performance of
the team/society they operate in. On the one hand, since they are inherently adaptive and operate based
on learning from environmental and peer inputs, it becomes problematic whether they will achieve
their intended purposes, and more importantly, whether they will do so without harming or impeding
their peers (and the society at large) to operate efficiently. It is important thus that their behaviour is
trustworthy from the perspective of others (peers, designers, etc.). On the other hand, while operating
in a designated team for a particular task, or in society for general purposes, these agents should
also be able to trust/distrust their peers and take from them or give them control over tasks when
needed in order to achieve (either individual or collective) goals. Trust is therefore at the core of
social intelligent behaviour [2], and from a machine intelligence perspective this is a fundamental
issue in relation to intelligent agents, which are supposed to operate in real-life conditions, in our
society. Socially, heterogeneous teams of human and machine agents require first of all that trust
between team members is enabled at each moment in time [1]. Without trust, delegation of tasks,
acceptance of tasks, sharing of tasks and any collaborative intelligent behaviour [9] in general may
be hardly achievable, and thus, the functionality of the team may be further affected, with significant
impact on its success.

In the case of humans, trust and distrust are inherently embedded in the complex fabric of human social
behaviour, and come from long term learning either through formal education or through various life
experiences and interactions. Displaying trustworthy behaviour or trusting the behaviour of others can
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be, arguably though, considered trivial from a human perspective. In the case of machines, it is less
clear how or if the two facets of trust can be achieved in the same manner as in humans’ case; thus
most of the existing approaches employ various constraints or prescriptive behaviours when critical
thresholds are reached [37]. However, ensuring trust at the interaction between heterogeneous agents
(machines and humans) in complex and dynamic environments may become extremely difficult when
the preferred approaches rely on imposing hard and explicit constraints, or prescriptive behaviour.
The issues become even more serious when these behaviours need to be redesigned for new tasks and
new environmental niches, where agents have to be reused and still exhibit trust capabilities within a
designated team, or in society in general.

In this paper we contribute to the concept of trust-enabled autonomous systems, studied under the
umbrella of trusted autonomy [1, 2], by promoting a research position and a potential research field
in which machines are educated towards exhibiting trust capabilities, rather than constrained or
programmed. In this way, trust can be injected in a machine agent directly in its learning capabilities,
and can be developed through systematic training programs that lead to the emergence of implicit
systems of values. These systems of values can further guide agent’s behaviour so that the agent (1)
is trustworthy and (2) can trust/distrust other agents.

The obvious source of inspiration for the Machine Education (ME) concept is human education,
under the assumption that machine agents possess enough learning capabilities so they can be subject
to education in similar (or as close as possible) ways the humans are. Humans perform tasks requiring
various types of skills or combinations of skills, at all levels from physical to mental. There are many
types of learning as well, with some learning types more appropriate than others for certain tasks.
Also, the same activity may require different learning types in different contexts. Therefore, when
educating people for a certain type of task, a systematic curriculum is used, which trains the relevant
skills in isolation, then trains their integration at various levels, until the necessary ‘heterarchy’ [28]
of skills is acquired. This heterarchy of skills allows the performance of the required task, and also
embeds the system of values necessary for exhibiting trust capabilities. Therefore, enabling trust
through education means that an agent (be it natural or artificial) is guided towards inherently adhering
to certain systems of values. A naive but intuitive example from human domain can be: children
should not smoke. This can be achieved by enforcing a crisp constraint/rule, such as “Smoking
is not allowed. Do not smoke!”, which equates in the machine agents domain with controlled or
constrained systems operating based on prescribed behaviours. Another way, which is the one we
promote through this position paper, is to expose these children to an active and natural lifestyle
where they enjoy the benefits of fresh air. As a consequence, smoking will simply not attract them.
Inhaling smoke will be against their nature, without any other need for us to describe what smoking
is and why should it be forbidden. In the machine agents domain, this is what we would call Machine
Education.

However, in the case of humans, education is possible due to the fact that all its ingredients or enablers
are in place. Numerous learning types are available, as well as the bio-psycho-physiological substrate
that facilitates this learning, e.g. memory and computation capabilities along with the relevant sensing
and embodiment. In the case of machines, these enablers are not yet sufficiently investigated in the
context of machine education; therefore several aspects need to be clarified for allowing the very
existence of the concept. The main purpose of this position paper is to pin down the broad issues
coming along with the machine education concept, and discuss the necessary ingredients, which are,
we believe, similar to those required for humans. Thus, the paper will focus (though very briefly) on
three major directions which we consider as the main enablers of future machine education research.
These directions are:

• the substrate issue: what is the substrate that allows learning to happen in machine agents;
• the learning issue: what are the learning types available to machine agents;
• the task issue: what is the task set and/or structure that agents need to be exposed to and

how their performance is to be assessed, so that as a result they acquire the needed systems of
values that guide their behaviour, given the existing learning capabilities and the subsequent
substrate.

We argue that, if these three are sufficiently investigated, systematic curricula can be envisaged to
educate agents towards gaining trust capabilities via implicit environmentally induced systems of
values. We also assume that, designing a good education program for a machine, with the purpose of
obtaining trust capabilities, works in a context where we consider machine agents that can gradually
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accumulate and integrate skills, including the skill of continuous skill maintenance and refinement,
i.e. a developmental approach.

Thus, this paper aims to generate the foundation of the machine education concept, and establish
the main directions of investigation that enable this concept to contribute towards building trusted
interaction within heterogeneous teams (and, ultimately, a society) of machines and humans. We
believe that machine education and the associated skill-based developmental view are relevant to
multiple applications, such as, but definitely not limited to, surveillance, exploration or disaster
recovery, where human-machine teaming is the pertinent mean of achieving present and future goals
in a society.

2 The substrate issue

Just like in the case of humans, there are certain conditions that facilitate the very existence of
potential skill-based trust capable machine agents, and thus, certain substrates that enable machine
agents to be subject to machine education. In relation to these substrates we identified two essential
aspects that need to be investigated; these are (1) memory and (2) sensory computing.

The former aspect refers to the intrinsic ability of an agent to accumulate experience, from which
it can later learn. When speaking about educating machines towards accumulating and combining
skills in relation to a specific task, there is the immediate question of how these skills are represented,
stored, and eventually retrieved and used. Therefore, it becomes pertinent to ask what is the best way
of implementing the memory effect [11], and clarify what memory is and how it operates. This first
aspect is situated at conceptual level, and investigating it may lead to methods or algorithms usable in
general, with any kind of agents.

The second aspect narrows the domain to the relevant type of agent (e.g. embodied or disembodied,
and their respective sub-categories), where the focus is on particular entities operating in mixed
human-machine teams with clearly established purposes. Consequently, the general methods and
algorithms previously envisaged need the appropriate technology support to ensure optimal operation.
Since the targeted entities are autonomous, they operate based on continuous interaction with
their environment; thus, they operate by conveniently storing and processing the perceived sensory
information. Thus, it becomes pertinent to investigate the type of sensory inputs agents should handle,
and the computational effort needed to do so, in order to find the most appropriate implementation
paradigm [23].

We believe that matching the conceptual operation of memory with the computational handling of
sensory inputs is the essential enabler of machine agents in the context of machine education, and we
reckon that research in this direction should investigate whether the two have a common ground on
which the skill-based agents can be built.

3 The learning issue

With a substrate in place, the next question is what are the types of learning that are available to
machines and can be hosted on this substrate. Machine learning technologies employ a variety of
techniques in order to endow artificial entities (machines) with the ability to autonomously learn
facts about various phenomena, in order to uncover and understand the inherent structures and causal
relations coming along with the sensory perception.

We consider several classes of computational intelligence methods which are of high importance in
enabling learning in machine agents: statistical machine learning, non-symbolic learning through
neural networks, and evolutionary techniques. The methods in these categories can be used either
individually or combined in order to implement agents capable to act autonomously in various
environments.

3.1 Statistical machine learning

Numerous statistical methods have been used over the years for extracting both structure and causal
relations from sensory perception [15]. Statistical analysis can be seen as the mathematical way to
capture and disseminate data, with the purpose of defining models for prediction. Rule sets (crisp,
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rough or fuzzy), k-means techniques, regression analysis, or decision tree analysis are some of the
most popular approaches, which generated a significant support for various methods and algorithms
used in general machine learning. Comprehensive reviews of these techniques can be found in [3] in
relation to their mathematical foundation, and in [16] in relation to sensory data acquisition.

In machine agents statistical analysis methods are mainly used as part of the inference modules,
especially for the data preprocessing stages, but also for tasks such as clustering or rule mining. In-
ductive Logic Programming, Support Vector Machines, and Bayesian Learning are popular integrated
approaches combining various statistical techniques. Thorough reviews of these approaches can be
found in [16], [29] and [24].

Methods in the statistical machine learning category benefit from a strong mathematical foundation,
through which they can provide well defined and reliable insights into the mechanisms underpinning
the sensory data and the problems at hand. However, [4] most of them can infer information mainly
from static and well structured data, while they produce less clear results when dealing with highly
non-linear data, dynamic environments or multidimensional sources.

3.2 Non-symbolic learning - neural networks

Typical artificial neural networks adopt a punctual (mathematical) representation of the neuron, where
the focus is primarily on the relation between inputs and outputs and lesson the biological plausibility.
They assume that a neuron state, and hence its output, is based on a threshold function which takes as
input the weighted sum of the connections incoming to it from other neurons. The pioneering work
of McCulloch and Pitts [25] proposed the simplest mathematical model, a binary punctual neuron
acting as a basic threshold gate and producing binary output based on the simple weighted sum of
the inputs. The simple approach of McCulloch and Pitts further evolved towards the more versatile
Perceptron [34], which in turn generated advanced models that included various linear or non-linear
threshold functions [33, 18] and non-binary, discrete- or continuous-valued outputs [33].

Numerous reviews from different historical periods, discuss both the single neuron models and the
resultant ANNs in relation to the mathematical underpinnings of their operation [41, 26, 18]. The
classic connectionist approach on artificial neural networks (ANNs) has its roots in the mathematical
neuron models. The resultant ANNs are used in a vast majority for computing in data mining, pattern
recognition and in other related fields that are part of the modern computational intelligence research
under the umbrella of neural information processing [8]. Consequently, they employ mainly the
processing side of the neural network operation. Computation based on punctual neuron models has
been employed by all major connectionist approaches, such as Feed-Forward multi-layer networks
with back-propagation, Radial Basis Function (RBS) networks [14], Adaptive Resonance Theory
(ART) [6, 7], Self Organising Maps (SOM) [17], Hopfield associative networks [13], or the more
general concept of deep neural networks (deep learning) [36].

The networks based on neurons with simple threshold gates with binary outputs are considered ANNs
of 1st generation (e.g. McCulloch-Pitts, standard Perceptron, Hopfield, Botlzmann machine), while
those based on neurons implementing activation functions with continuous outputs (e.g. MLP, RBF
etc.) are considered ANNs of the 2nd generation [33].

Learning with neural networks can be either through a supervised learning process, when certain
amount prior domain knowledge about the environment and data exists, or through unsupervised
learning, when no prior domain knowledge exists. In either cases the networks can be used in conjunc-
tion with symbolic production systems, e.g. in the form of sets of rules, statistical learning/analysis
or evolutionary computation techniques.

3.3 Evolutionary techniques

The motivation for applying evolutionary computation techniques to learning is that they are robust and
adaptive search techniques that perform global search in solution spaces. Evolutionary computation
techniques can be used either as standalone learning methods, or in conjunction with other machine-
learning tools to evolve parameters of these methods in order to improve the quality of overall learning
[31, 30]. Evolutionary computation techniques have been found particularly useful in processing of
large quantities of raw noisy data, where large numbers of parameters used by various other learning
techniques needed to be optimally set in order for those methods to be able to generate meaningful
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learning behaviour. In [31] and [30] the authors identify the most used evolutionary techniques for
feature selection, classification, clustering and association rule mining, and provide detailed guidance
for adapting the design of each component of the evolutionary algorithms (e.g. encoding, genetic
operators, selection strategies, objective functions) to the desired learning task. Also in a different
study, Ngai and colleagues [32] investigate how various methods based on evolutionary algorithms
can be employed to evolve features of neural networks used as primary means in learning contexts.

4 The task issue

We have seen in the previous two sections how the concept of machine education can be enabled by the
existence of sufficient learning capabilities, together with the substrate (conceptual and technological)
on which this learning and its outcomes occur. However, another aspect subsequent to educating
machine agents is related to the tasks they need to be exposed to, in order to gain trust capabilities.

The task issue has been traditionally addressed by task and cognitive task analysis in relation to human
activity, as discussed in-depth in [20], and by system dynamics in relation to artificial (technical)
systems, as described in [12]. However, both directions treat tasks from a top-down perspective,
where a complex task of interest is decomposed in simple primitive tasks.

In the case of machine education the interest is in the opposite direction, that is, a developmental
endeavour towards the emergence of general intelligence. In this view, through a bottom-up approach,
a machine agent or system learns to perform simple tasks by acquiring the relevant skills, and then
gradually acquire through systematic training new and more complex (and transferable) skills that, in
turn, allow the performance of new and more complex tasks. This aspect has been recently addressed
in several studies [38, 39], where the authors noted the need of a task theory in relation to artificial
systems, which would reflect the developmental perspective. Thorrisson et al. [39] position the task
concept at the core of artificial systems, due to the fact tasks are used for both training and evaluation
of these systems, and therefore, we note, tasks are at the foundation of curriculum design. Thus,
the need of an unifying framework that would integrate the relevant aspects of intelligent behaviour
in relation to assessment and development of skills necessary for exhibiting proficiency in certain
contexts of interest. In [38] a framework with 11 design principles is proposed in relation to both
the task and the environment in which an artificial agent operates, with the purpose of facilitating
a consistent path for development of artificial general intelligence capabilities. Later, in [39] a
framework with 6 design principles is proposed, taking into account only the tasks and not the
environment.

The task issue have been only recently addressed from a skill-based perspective, under the umbrella of
curriculum learning. In [19], the authors describe a designer-based curriculum applied to a skill-based
computational Sudoku solver. The solver learns to play Sudoku based on a set of non-symbolic
primitive skills (neural networks) trained in isolation to overfit the corresponding primitive tasks. The
primitive skills are then aggregated through a symbolic production system to solve Sudoku boards in a
cognitively plausible manner. An entirely non-symbolic approach to curriculum learning is presented
in [5], where the authors use deep neural networks that learn initially from simple examples and then
progress towards learning from more complex ones in order to gradually increase proficiency in a
task of interest. The purpose in this study however, is not to advance towards multiple task learning
and skill transfer for generalisation, but rather to speed up the learning, based on the assumption that
by choosing the order in which examples are presented to the learner, one can guide training towards
better and faster learning. In a more recent study [42], the authors refine the approach presented in
[5], and use a similar curriculum learning method in conjunction with a Recurrent NN (RNN) with
long short-term memory (LTSM) units which provides the memory substrate needed for potential
application to skill transfer and generalisation to new tasks. In another recent study [35], the authors
propose the so-called “progressive neural networks”, claiming advanced ability to learn skills for
solving multiple tasks. They note that the proposed progressive network is able to perform skill
acquisition and transfer, while avoiding catastrophic forgetting. The proposed networks are tested in
multiple reinforcement learning tasks on various 3D maze games, confirming that transfer occurs at
both low-level sensory and high-level control layers of the learned policy.

The use of curricula for with a focus on trust is still in its infancy, with very few studies grouped around
the concept of adversarial sampling. Curriculum learning for adversarial contexts has been studied
mainly with a focus on adversarial alterations of the training data, known as Causative Availability
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[40], where alterations can be done based on various sample selection methods. Examples are targeted
alterations focusing on particular samples that are of interest for an adversary, or indiscriminate
alterations produced with randomly selected samples across the training data set. Regardless of the
way the samples to be altered are chosen, the alteration itself plays an important role in learning
accuracy and subsequent trustworthiness of the learner agent [22].

5 Discussion

Evolution and learning are two of the essential ingredients that facilitated the existence of biological
life as we know it today, especially when referring to life forms exhibiting highly intelligent behaviour,
such as humans. It is nowadays common understanding that humans are born with particular
predispositions due to genetic inheritance, and then learn continuously during their lifetime in order
to expand their skills and capabilities. With respect to a particular individual, these are typically
known at a philosophical level as nature and nurture, respectively. The former is concerned with the
substrate that allows learning, which consists of genetic information, neuro-biological aspects and
other innate psycho-physiological features. The latter is concerned with how learning occurs on this
substrate, since this learning comes in a variety of forms. Further, the development of the individual
receives substantial contribution from both formal education and incidental self-education through
continuous socio-environmental exposure.

The broad field of AI envisaged artificial agents (either embodied or not) capable of exhibiting
intelligent behaviour similar or above to that seen in humans. However, since Dartmouth manifesto
established the field of AI six decades ago [9], various subsequent research fields expended large
amounts of resources on attempts to ‘build’ the intelligence per se, as a designer-based deliverable
product, and endow various artificial agents with this ‘product’ so they perform the required tasks in
the desired way. Classic intelligent agents operating under the assumption of rationality relied on
utility-related enablers and have been often instantiated via rule, constraint, and other knowledge-
based constructs for achieving the relevant behaviours. The very essence of intelligent behaviour, i.e.
learning and its subsequent substrate, has been out of the mainstream machine agents research for a
long period of time.

In the last few decades though, a significant shift took place towards learning and adaptation as the
underpinnings of artificial intelligent behaviour. Recent work [10, 9] thoroughly explains this shift in
paradigm, and notes how it becomes clear that today’s machine agents rely heavily on adaptation,
learning and skills, as opposed to rules, control and knowledge, and are the result of a continuous
(self)development via interaction with their environment and peers. In this case, the resultant
behaviour becomes questionable from a trust perspective, given that these agents continuously learn
from and adapt to their environment rather than being controlled in a programmatic manner.

The first important question arising is: can these agents be constrained to become trustworthy (by
rules or other prescriptive means), since they are meant to be adaptive? Or any attempt to control
an adaptive entity via constraints is generating a paradox in relation to the very idea of adaptive
behaviour, and is therefore ineffective. While not dismissing the former, we do support the latter
statement, due a number of issues applicable to constrained trustworthiness, as follows:

1. difficulty to formulate such a constraint when the situation requiring the constraint is complex
(designer’s point of view);

2. even if a good formulation is found, a complex operational environment may prevent the
agent to recognise either or both the situation and the constraint that applies (agent’s point
of view);

3. even when (1) and (2) are satisfied, the agent may still have difficulties in deciding how to
apply the constraint in the current context (agent’s point of view).

However, if trust capabilities are obtained through education instead of constraints, this leads to a
rather soft approach to trust, and to another important question: if hard constraints are not in place, is
trustworthiness by education robust against environmental and/or peer pressure? Continuing the naive
example of smoking children, this would equate with the following situation: “if you do not smoke
you do not belong to our fancy group; therefore, you will be alone”. Thus, children may indeed
enjoy fresh air, but under peer pressure they may fail to refrain from smoking. This question does
not have an immediate answer, and arguably, is the question that defines the proposed research on
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machine education as a significant emerging topic in AI and related fields. Indeed, we can argue that,
in general, the way to ensure a high likelihood that one delivers the expected outcome, is consistent
training following relevant systematic approaches. The better trained one is, the higher the pressure
he/she can sustain. How well the training program is designed and applied is the key ingredient to
success (along with trainee‘s quality, of course, which touches the substrate/learning issue). Thus, we
can speculate that, strictly related to machine agents, this could be seen as employing a certain mix
of machine learning methods with the purpose of over-fitting machine’s behaviour (i.e. the relevant
skills) to training samples. Yet, substantial investigation needs to be performed in order to make such
a claim based on clear scientific grounds.

6 The “Machine Education” road-map

In the light of the above discussions, it becomes pertinent to say that the concept of machine education
assumes a skill-based view [19] on intelligent machine agents, in which these agents have the ability
to acquire new skills, maintain existing skills, and rewire the ‘heterarchical’ organisation of the skill-
set [28, 21], through continuous training by exposure to or interaction with relevant training material.
Therefore, machine education is different from machine learning through that it wraps conveniently
the variety of machine learning types into meaningful aggregated skill acquisition programs for
machines. Since numerous learning types exist in relation to machine agents, the acquisition and/or
maintenance of different skills may require different learning types. Also, different learning types
may be required by the same skill in different contexts. Thus, machine education is a way of handling
in a systematic and consistent manner, either designer-based or through self-education capabilities,
the various training programs applicable to each skill, to integration of these skills, and to refinement
of this integration, in order to enable agents’ success in multiple environments and tasks.

In essence, educational curricula specialised for particular tasks are to be obtained by conveniently
aggregating interdependent individual skill training programs, which may be similar in a certain
extent to the way education principles operate in case of humans. The skill-based view on agents
has been recently receiving increased attention, with numerous studies concentrating on designing
architectures for agents with cognitive skill development capabilities. Several discussions relevant
to the above can be found in: [21] - on cognitive agent architectures, [19] - on skill acquisition and
integration using neural networks, [2] - on foundations of trust and sensor-based autonomy/adaptation.

From a trust perspective, through a curriculum, machine education focuses on enabling machine
agents to achieve training-induced value systems [27] that guide them to behave in the intended way
and not otherwise. While not entirely excluding hard constraints and prescriptive behaviours, in
machine education it should be desired that agents gain trust capabilities purely by extracting the
value systems through exposure to external world and learning. In human-machine teaming, trust
is concerned not only with gaining an agent’s own trustworthy behaviour, but also with the agent
gaining trust in behaviours of others in the team [1]. Machine education can contribute to this when
the system of values for an agent emerges from observing both the operational environment and peer
agents, as summarised in Figure 1. Therefore, an agent can be educated or can self-educate for both
sides of trust: become trustworthy, and trust others (humans or machines). In addition, the agent can
be re-educated or can self-educate continuously towards expansion of its skills and value system, in
order to operate in new teams for accomplishing new purposes. In this manner, the machine education
paradigm seeks to create machine learning systems with trust capabilities.

7 Conclusions

In this paper we contribute to the concept of trusted autonomy adopting a position in which trust
capabilities in human-machine teaming contexts are nurtured in machine agents via education. We
postulated that designing a good education program for a machine with the purpose of obtaining trust
enabled behaviour, works in a context where machine agents can gradually accumulate and refine
skills; that is a skill-based developmental view.

Based on this view we proposed Machine Education, an emerging research topic that envisages
machine agents capable to acquire via skills certain systems of values needed for them to exhibit
trust capabilities. We then performed a brief analysis of the essential ingredients allowing the very
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Figure 1: Machine education: the perspective

existence of machine education concept, proposing that future research on this topic should build on
a foundation with three pillars: the substrate, the learning and the task.
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