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Abstract

Deep lifelong learning systems need to efficiently manage resources to scale to
large numbers of experiences and non-stationary goals. In this paper, we explore
the relationship between lossy compression and the resource constrained lifelong
learning problem of function transferability. We demonstrate that lossy episodic
experience storage can enable efficient function transferability between different
architectures and algorithms at a fraction of the storage cost of lossless storage.
This is achieved by introducing a generative knowledge distillation strategy that
does not store any full training examples.

1 Introduction

In this work we focus on developing a biologically motivated deep neural network architecture to
accomplish the task of general purpose function transferrability. Our goal is to build a network that
can efficiently transfer the function it learns to networks with a wide variety of a different architectures.
This is a critical component of an ideal lifelong learning system. Optimal neural network architectures
for learning have often been found to be problem specific and by enabling function transferrability we
can more readily apply background knowledge using an architecture focused on the current goal. We
achieve this by extending knowledge distillation techniques [4, 10] focused on transferring knowledge
from a teacher neural network to a student neural network. Generally, the student neural network
learns to imitate the output (sometimes modulated by a temperature) created by the teacher neural
network. While most techniques explore knowledge distillation leveraging real labelled or unlabelled
inputs, with scalability to lifelong many task learning in mind, we focus on learning to generate lossy
recollections of inputs so that we can that compress the storage needed to maintain general purpose
transferability of the teacher’s function. Our proposed architecture based on recent discrete latent
variable variational autonencoder models [11, 22] generates recollections of comparable effectiveness
in training student models to real data, but with multiple orders of magnitude less memory resources
consumed.

In our work, we focus on designing a way to scale experience replay solutions by reducing the footprint
of storing an experience for recollection later in a non-stationary continual learning environment.
This idea actually has biologically inspired motivation relating back to the pioneering work of [23],
describing the potential complementary dynamics of the hippocampus and neocortex. In this theory,
the hippocampus is responsible for fast learning, providing a very plastic representation for storing
short term memories. Because the neocortex responsible for reasoning would otherwise suffer from
catastrophic forgetting, the hippocampus also plays a key role in generating approximate recollections
to interleave with incoming experiences, stabilizing the learning of the neocortex. To model the
hippocampus as a recollection generation engine as suggested by [23], we develop a modern artificial
neural network model of the hippocampal memory index theory in light of recent advancements
in Deep Learning. Hippocampal memory index theory was first proposed by [28] as a theory for
brain function in the hippocampus and later slightly revised in [29] after twenty years of related
research. The theory primarily involves the hippocampus, believed to be involved in recalling previous



experiences, and the neocortex, believed to be responsible for reasoning. The crux of the theory is the
idea that the hippocampus does not literally store previous experiences, but rather efficiently stores
light weight indexes corresponding to information that can then be retrieved from a complimentary
association cortex. The association cortex is considered to be part of the human neocortex, however,
its location varies by species. As a result, in our work we model it as a separate component of our
system.

Our artificial neural network implementation of this model consists of three primary modules. For
clarity, we provide an illustration of our proposed three module architecture in Figure 1. We model a
reasoning module with a standard supervised deep neural network that has an architecture suited to
the current goal of the system. We also have an association module, which we model as a variational
autoencoder [13] with discrete latent variables as in [11, 22]. By leveraging discrete latent variables,
we can store codes with significantly smaller storage footprint at the same average distortion achieved
by more traditional autoencoder models. The final component of our system is a recollection buffer
that stores latent codes affiliated with prior experiences. In conjunction with the decoder of the
association module, we can sample from the buffer to create approximate recollections. These
recollections are provided as input to the reasoning module. We will demonstrate using this capability
to transfer knowledge to a randomly initialized machine learning model without fully storing any
data.

2 Related Work

Our proposed model is related to popular generative models such as variational autoencoders [13]
and generative adversarial networks [7]. However, our work is unique in its use of an approximate
replay buffer for faster generative knowledge transfer. Recent work also looks at the problem of
generative lifelong learning [24] with a variational autoencoder, introducing a modified objective that
would potentially be complementary to our contribution.

Even the first work on the topic of knowledge distillation [4] introduced a strategy for producing
synthetic data to amplify real data. Additionally, unlabelled data has been widely used [26, 16, 1, 15]
for knowledge distillation. Generative models have also been used as a sole source for distillation
before in the context of language models [27], but not in the more general case where there is a
separate input and output to generate for each example. By achieving high quality purely generative
distillation, our goal is to obtain a form of general purpose knowledge transfer. As a result, our work
is related in motivation to techniques that look to preserve knowledge after transforming the network
architecture [5, 30].

[12] recently also looked at the problem of memory management with respect to lifelong learning.
That work was primarily concerned with mechanisms for combining memories, and for incorporating

Figure 1: An example illustration of our proposed three module architecture. First, the input
observation is encoded to a latent code that is stored in a recollection buffer. Later, a code is selected
from the buffer and sent through the decoder to provide a recollection for which the reasoning module
makes a prediction.
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context dependent look-up with reasoning. Our main contribution instead lies in the compression of
memory footprint, which has not been addressed by recent work on deep lifelong learning.

3 Lifelong Episodic Compression

Recent work on lifelong continual learning in deep neural networks [25], [20] has focused on the
resource constrained lifelong learning problem and how to promote stable learning with a relatively
small diversity of prior experiences stored in memory. In this work, we complete the picture by also
considering the relationship to the distortion of the prior experiences stored memory. We achieve
this by considering the resource constraint in scaling lifelong learning not in terms of the number of
full examples stored, but instead in terms of bits of storage. This is very practical because it relates
back to real footprints on computer hardware. We would like to scale to an unbounded number of
examples, but in practice we must ground our work in finite time horizons.

In this paper we explore experiments on the MNIST and Omniglot. For MNIST and Omniglot we
follow prior work and consider 28x28 images with 1 channel and 8-bits per pixel. MNIST and
Omniglot images were originally larger, but others have found the down sampling to 28x28 does
not effect performance of models using it to learn. Multiplying out, we find that storing full images
from MNIST and Omniglot will have a cost of 8x1x28x28 = 6,272 bits per image. By the same logic,
storing 32x32 CIFAR images with 3 color channels and 8-bits per pixel per channel will have a cost
of 8x3x32x32 = 24,576 bits. Deep non-linear autoencoders are considered a non-linear generalization
of PCA and are a natural choice for compression problems. Theoretically, an autoencoder with
a representation the same size as its input should be able to copy any input by simply learning
an identity transformation. An autoencoder with a continuous latent variable of size h, assuming
standard 32-bit representations used in modern GPU hardware, will have a storage cost of 32h bits
for each latent representation.

One hurdle when using a standard continuous variable autoencoder for compressing input observations
is that the 32 bits used for the model parameters, that also govern the representation size, most
likely exceed the required precision. We propose a principled approach to guarding against this
issue by leveraging the recently proposed variational autoencoder model with categorical latent
variables [11, 22] to enable the model to learn a representation while explicitly considering a certain
degree of storage precision. For a categorical latent variable autoencoder, we consider a bottleneck
representation between the encoder and decoder with c categorical latent variables each containing l
dimensions representing a one hot encoding of the categorical variable. Whereas this representation
requires S1h = lc bits to store the latent variable, with simple binary encoding of each categorical
latent variable, we can store this representation with the following number of bits [6]:

Ssbe = c · dlog2(l)e . (1)

In Figure 2 we back up our theoretical intuition and empirically demonstrate that autoencoders with
categorical latent variables can achieve significantly more storage compression of input observations
at the same average distortion as autoencoders with continuous variables. More detail is provided
about this experiment in Appendix A.1.

The ability of a discrete variational autoencoder to memorize inputs should be strongly related to the
effective bottleneck capacity Cve, which we define, for discrete latent variables, as:

Cve = log2 l
c . (2)

3.1 Incremental Storage Resource Constraints

First, let us consider the dynamics of balancing resources in a simple setting where we have an
incremental storage constraint for new incoming data without regard for the size of the model used to
compress and decompress recollections. We refer to the total storage constraint over all N incoming
examples as γ and the average storage rate limit as γ/N . We can then define ρ as the probability that
an incoming example is stored in memory. Thus, the expected number of bits required per example
stored is ρSsbe, assuming simple binary encoding. If we treat ρ as fixed, we can then define the
following optimization procedure to search for a combination of c and l that maximizes capacity
while fulfilling an incremental resource storage constraint:
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maximize
c,l

Cve

subject to ρSsbe ≤
γ

N
,

(3)

which yields the approximate solution Cve ' γ
Nρ . As seen in equation 3, there is an inherent tradeoff

between the diversity of experiences we store governed by ρ and the distortion achieved that is related
to the capacity. The optimal tradeoff is likely problem dependent. However, it is often possible to
achieve significant compression at only a small degree of distortion.

3.2 Total Storage Resource Constraints

In some ways, the incremental storage constraint setting described in the previous section is not the
most rigorous setting when comparing lossy compression to lossless compression where a subset
of full inputs are selected. Another important factor is the number of parameters in the model |θ|
used for compression and decompression. |θ| generally is also to some degree a function of c and l.
For example, in most of our experiments, we use the same number of hidden units cl at each layer as
used in the bottleneck layer. With fully connected layers, this yields |θ|(c, l) ∝ (cl)2. As such, we
can revise equation 3 to handle a more rigorous constraint for optimizing a discrete latent variable
autoencoder architecture:

maximize
c,l

Cve

subject to ρSsbe + |θ|(c, l) ≤ γ/N,
(4)

While this setting is more rigorous when comparing to lossless inputs, it is a somewhat harsh
restriction with which to measure lifelong learning systems. This is because it is assumed that the
compression model’s parameters should be largely transferrable across tasks. To some degree, these
parameters can be viewed as a sunk cost from the standpoint of continual learning.

4 Lifelong Learning with a Recollection Buffer for Function Transfer

In hippocampal memory index theory there are two central capabilities to model: pattern completion
and pattern separation. In this section we will first discuss the architecture of our proposed recollection
generator used for pattern completion and then explain how it is combined with a buffer used for
pattern separation.

Figure 2: A comparison of the relationship between average reconstruction L1 distance on the MNIST
training set and sample compression for both continuous latent variable and categorical latent variable
autoencoders.
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4.1 Categorical Latent Variable Autoencoders with the Gumbel-Softmax

Deep autoencoders, sometimes referred to as autoassociators, are trained to first compress and then
reconstruct approximations of the input. By providing autoassociation capabilities, autoencoders
excel at pattern completion. We can think of every autoencoder as having two major components
called the encoder and decoder, which should have specialized architectures tuned to the problem of
interest. In the standard formulation, the representation learned by the encoder z is generally modeled
with continuous variables. In order to model an autoencoder with discrete latent variables, we follow
the success of recent work [11, 22] and leverage the Gumbel-Softmax function. The Gumbel-Softmax
function leverages the Gumbel-Max trick [9, 21] which provides an efficient way to draw samples z
from a categorical distribution with class probabilities pi:

z = one_hot(argmax
i

[gi + log(pi)]) (5)

In equation 5, gi,...,gd are samples drawn from Gumbel(0,1), which is calculated by drawing ui from
Uniform(0,1) and computing gi=-log(-log(ui)). The one_hot function quantizes its input into a one
hot vector. The softmax function is used as a differentiable approximation to argmax, and we generate
d-dimensional sample vectors y with temperature τ in which:

yi =
exp((gi + log(pi))/τ)∑d
j=1 exp((gj + log(pj))/τ)

(6)

The Gumbel-Softmax distribution is smooth for τ > 0, and therefore has a well-defined gradient
with respect to the parameters p. During forward propagation of our categorical autoencoder, we
send the output of the encoder through the sampling procedure of equation 5 to create a categorical
variable. However, during backpropagation we replace non-differentiable categorical samples with
a differentiable approximation during training as the Gumbel-Softmax estimator in equation 6.
Although past work [11, 22] has found value in varying τ over training, we still were able to get
strong results keeping τ fixed at 1.0 across our experiments.

4.2 Recollection Buffer Design

Now that we have discussed our method for achieving pattern completion with a variational autoen-
coder, we will explain how we also preserve pattern separation by storing discrete latent codes to
be used for recalling specific past experiences. Figure 3 provides an illustration of our proposed
approach for distilling the function of a teacher neural network to a student neural network. A recol-
lection buffer is maintained that stores latent codes corresponding to the autoencoder’s compressed
representation of the input. We either randomly or adaptively select codes from the recollection buffer
and pass them through the decoder of the autoencoder to produce approximate recollections. The
recollections are used as input to activate both a teacher neural network which produces an output
vector for the student to imitate and a student neural network. The student neural network computes a
loss function with respect to the teacher’s output and learns using a variant of gradient descent. An
alternative to consider is keeping a memory of the class index associated with each input as opposed
to a teacher network as they are already in a very compact representation. In our experiments it was
more effective to train using continuous signal of the teacher’s output than the real discrete output
classes. However, using the real class is more robust to imperfections in the teacher network.

5 Evaluation Settings

In this section we will empirically support the methods proposed in the previous sections by applying
them to the popular MNIST digit recognition dataset [19] and the Omniglot character recognition
dataset [17] considering each of the 50 alphabets to be a task. Across all of our experiments, our
generator model is a discrete latent variable convolutional variational autoencoder including three
convolutional layers in the encoder and three deconvolutional layers in the decoder. In all of our
knowledge distillation experiments, we report an average result over 5 runs. More details can be
found for all of our experiments in Appendix A.
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Figure 3: An illustration of how our proposed recollection generator is used to produce recollections
to transfer knowledge from a teacher neural network to a student neural network.

Figure 4: Comparison of generative transfer learning performance using a CNN teacher and student
model on MNIST while using code sampling and recollection buffer sampling.
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5.1 General Purpose Knowledge Transfer Experiments

We will now empirically demonstrate our proposed recollection generator’s ability to transfer knowl-
edge from a teacher neural network to a student model. In our experiments, we train a teacher
model with a LeNet [18] convolutional neural network (CNN) architecture on the popular MNIST
benchmark, achieving 99.29% accuracy on the test set. Alongside the teacher model, we train a
generator model with discrete latent variables. Each model is trained for 500 epochs. During the final
pass through the data, we forward propogate through each training example and store the latent code
in a recollection buffer. This buffer eventually grows to a size of 50,000. After training is complete,
the recollection buffer is used as a statistical basis for sampling diverse recollections to train a student
network. A logical and effective strategy for training a student model is to sample randomly from
this buffer and thus capture the full distribution.

Validating the utility of the recollection buffer. First, we will empirically make the case for our
proposal of using episodic recollections to augment a variational autoencoder model for knowledge
transfer. In Figure 4 we look at two discrete latent variable models with 168 2d variables and 38 2d
variables, comparing performance for buffer based sampling with standard random code sampling
of with no explicit episodic memory. We see that much more efficient knowledge transfer can be
achieved by sampling from an episodic buffer. It is important to note that this advantage is not simply
a result of increased storage used by the recollection buffer. The smaller model with an episodic
buffer achieves better transfer performance than the larger model does using code sampling. This
is despite the fact that the larger model’s parameter storage is 7.4x more than the total storage of
the parameters and buffer combined for the smaller model. Actually, if anything we are seeing the
opposite behavior. Interestingly, we are observing decreased transfer ability with the larger model
when using code sampling. We hypothesize that although the reconstruction modeling power of a
discrete autoencoder increases with capacity, there is a tension between increasing the capacity and as
a result increasing the dimensionality of the latent space to search through. Large latent spaces have
large regions which they can model that are not statistically representative of the data distribution
seen. By providing the variational autoencoder with an episodic buffer we are able to get the best of
both worlds: the ability to increase the size of the representation used for modeling and the ability to
efficiently transfer from it in a way that is representative of the prior distribution of inputs.

Comparing the recollection buffer to lossless baslines. In Table 1 we further validate the effec-
tiveness of our technique by comparing it to some additional baselines of interest. As baselines we
consider training with the the same number of randomly sampled real examples, using real input
and the teacher’s output vector as a target, and using random sampling to select a subset of lossless
memories with equivalent storage footprints. When training with a large number of memories for a
more complete knowledge transfer, the recollection compression clearly shows dividens over random
sampling baselines. This is impressive particularly because these results are for the stricter resource
constraint setting discussed in section 3.2 and on a per sample basis the compression is actually 37x,
101x, and 165x to account for the autoencoder model capacity. We also would like to validate these
findings in a more complex setting for which we consider distillation with outputs from a 50 task
Resnet-18 teacher model that gets 94.86% accuracy on Omniglot. We test out performance after
one million training episodes, which is enough to achieve teacher performance using all of the real
training examples. However, sampling diversity restricts learning significantly, for example, achieving
28.87% accuracy with 10% sampling, 8.88% with 2% sampling, and 5.99% with 1% sampling. In
contrast lossy compression is much more effective, achieving 87.86% accuracy for 10x total resource
compression, 74.03% accuracy for 50x compression, and 51.45% for 100x compression.

Distilling functions to different neural architectures. Our main motivation for enabling general
purpose knowledge distillation is for occasions where we would like to change the architectural form
of our knowledge over time, not keep it constant. In Table 5 we consider distillation from our LeNet
CNN teacher model to a multi-layer perceptron (MLP) student with two hidden layers of 300 hidden
units. For MLPs we again see our recollection compression is comparable to the performance of real
examples while using much less storage, and lossy compression scales much better than sampling
lossless inputs.

5.2 Automated Generative Curriculum Learning Experiments

We would like to maximize the efficiency of distilling knowledge from a teacher model to a student
model. This motivates the automated curriculum learning setting [2] as recently explored for multi-
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Episodes Real 10% 2% 1% Real x 10x 50x 100x
Data Sample Sample Sample Teacher y Compress Compress Compress

10 10.43 9.94 11.07 10.70 10.07 10.65 10.99 13.89
100 19.63 18.16 22.82 22.35 25.32 19.34 16.20 21.06

1000 90.45 88.88 90.71 89.93 91.01 90.66 90.52 90.03
10000 97.11 96.83 95.98 94.97 97.42 96.77 96.37 95.65
100000 98.51 97.99 96.14 94.92 98.63 98.59 98.17 97.75

Table 1: Generative knowledge distillation random sampling experiments with a CNN teacher and
student model on MNIST.

Episodes Real Real x Active 10x Active 100x Active & Diverse Active & Diverse
Data Teacher y Compress Compress 10x Compress 100x Compress

10 10.43 10.07 9.95 10.19 10.67 11.51
100 19.63 25.32 14.80 22.57 27.05 29.93
1000 90.45 91.01 93.45 92.97 94.81 92.54

10000 97.11 97.42 98.61 97.53 98.59 97.66
100000 98.51 98.63 99.18 98.25 99.20 98.32

Table 2: Generative knowledge distillation active and diverse sampling experiments with a CNN
teacher and student model on MNIST. The real input baselines are randomly sampled.

task learning in [8] or rather automated generative curriculum learning in our case. We tried some
simple reinforcement learning solutions with rewards based on [8] but were unsuccessful in our initial
experiments because of the difficulty of navigating a complex continuous action space. We also tried
an active learning formulation proposed for GANs to learn the best latent code to sample [33] at a
given time. We had limited success with this strategy as well as it tends to learn to emphasize regions
of the latent space that optimize incorrectness, but no longer capture the distribution of inputs.

Designing generative sampling heuristics. Inspired by these findings, we instead employ simple
sampling heuristics to try to design a curriculum with prototypical qualities like responsiveness to the
student and depth of coverage. We model responsiveness to the student as active sampling by focusing
on examples where the student does not have good performance. We randomly sample k latent codes
using our recollection buffer and choose the one that is most difficult for the current student for
backpropagation by cheaply forward propagating through the student for each. By sampling from
the recollection buffer, we are able to ensure our chosen difficult samples are still representative
of the training distribution. We set k to 10 in our experiments so the sampling roughly equates to
sampling once from the most difficult class for the student model at each point in time. We model
depth of coverage by sampling a bigger batch of random examples and adding a filtering step before
considering difficulty. We would like to perform diverse sampling that promotes subset diversity when
we filter from kn examples down to k examples. One approach to achieving this is a Determinantal
Point Process (DPP) [14] as recently proposed for selecting diverse neural network mini-batches [32].
We use the dot product of the inputs as a measure of similarity between recollections and found the
DPP to achieve effective performance as a diverse sampling step. However, we follow [3] and use
a process for sampling based on the sum of the squared similarity matrix as outlined in Appendix
A.4. We found the sum of the squared similarity matrix to be equally effective to the determinant
and significantly more scalable to large matrices. We also set n to 10 in our experiments. In Table
2 we demonstrate the superior performance of the proposed active and diverse sampling strategies.
Consistently we are able to achieve more efficient training of the student networks than is achieved
with random real examples.

6 Conclusion

We have proposed a discrete latent variable autoencoder based model for generative knowledge
distillation, enabling general purpose function transferrability. Autoencoders with discrete latent
variables are capable of far more sample compression than continuous latent variable models. Addi-
tionally, variational autoencoders equipped with a lossy recollection buffer are capable of multiple
orders of magnitude faster knowledge distillation in comparison to traditional code sampling. We
consistently find lossy compression of memories to be more effective than lossless episodic sampling.
In exploring the task of automated generative curriculum learning, we find that a teacher with an
intelligent generator can outperform random real examples in terms of the efficiency of teaching
a function to a student neural network. This promising result demonstrates how general purpose
machine to machine knowledge communication can be a useful tool for efficiently training models to
perform new skills that have been mastered by other models.
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A Additional Details on Experimental Protocol

Each convolutional layer has a kernel size of 5. As we vary the size of our categorical latent variable
across experiments, we in turn model the number of filters in each convolutional layer to keep the
number of hidden variables consistent at all intermediate layers of the network. In practice, this
implies that the number of filters in each layer is equal to cl/4. We note that the discrete autoencoder
is stochastic, not deterministic and we just report one stochastic pass through the data for each
experimental trial.

A.1 Distortion as a Function of Compression Experiments

More detail about the architecture used in these experiments are provided for categorical latent
variables in Table 3 and for continuous latent variables in Table 4. For each architecture we ran
with a learning rate of 1e-2, 1e-3, 1e-4, and 1e-5, reporting the option that achieves the best training
distortion. For the distortion, the pixels are normalized by dividing by 255.0 and we take the mean
over the vector of the absolute value of the reconstruction to real sample difference and then report
the mean over the samples in the training set. Compression is the ratio between the size of an 8bpp

10



c l Compression Distortion
6 20 209.067 0.06609
10 20 125.440 0.04965
6 16 261.333 0.07546
12 10 130.667 0.05497
10 14 156.800 0.05410
24 3 130.667 0.05988
38 2 165.053 0.05785
6 2 1045.333 0.13831
40 3 78.400 0.04158
20 2 313.600 0.08446
8 6 261.333 0.08423
12 6 174.222 0.06756
30 2 209.067 0.06958
24 6 87.111 0.04065
4 37 261.333 0.07795
8 15 196.000 0.06812
48 10 32.667 0.01649

209 8 10.003 0.01455
12 37 87.111 0.03996

313 4 10.019 0.01420
392 3 8.000 0.01348
50 18 25.088 0.01859

168 2 37.333 0.01955
108 3 29.037 0.01894
62 2 101.161 0.04073

208 2 30.154 0.01832
68 5 30.745 0.01849

Table 3: This table provide more specifics about the discrete latent variable architectures involved in
Figure 2.

h Compression Distortion
1 49 0.135196
2 24.5 0.124725
3 16.33333333 0.0947032
5 9.8 0.0354035
7 7 0.031808

20 2.45 0.0149272
Table 4: This table provide more specifics about the continuous latent variable architectures involved
in Figure 2.

MNIST image and the size of the latent variables, assuming 32 bits floating point numbers in the
continuous case and the binary representation as in (1) for the categorical variables. The JPEG data
points were collected using the Pillow Python package using quality 1, 25, 50, 75, and 100. We
subtracted the header size form the JPEG size so it is a relatively fair accounting of the compression
for a large data set of images all of the same size. The JPEG compression is computed as an average
over the first 10,000 MNIST training images.

A.2 MNIST Generative Distillation Experiments

For all of our distillation experiments we ran the setting with a learning rate of 1e-3 and 1e-4,
reporting the best result. We found that the higher learning rate was beneficial in setting with a low
number of examples and the lower learning rate was beneficial in setting with a larger number of
examples. The categorical latent variable autoencoders explored had the following representation
sizes: 168 2d variables for 10x compression, 62 2d variables for 50x compression, and 38 2d variables
for 100x compression. For our code sampling baselines, we used the numpy random integer function
to generate each discrete latent variable.
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Episodes Real 10% 2% 1% Real x 10x 50x 100x
Data Sample Sample Sample Teacher y Compress Compress Compress

10 13.64 17.04 14.57 15.13 15.87 16.70 11.80 14.66
100 36.37 37.04 38.35 34.04 38.56 37.16 40.09 42.31

1000 80.54 79.08 78.18 77.76 80.00 80.72 80.00 77.75
10000 91.04 90.84 88.38 86.83 90.86 91.37 90.60 90.46
100000 96.66 95.02 91.61 88.97 96.60 96.71 96.24 95.22

Table 5: Generative knowledge distillation random sampling experiments with a CNN teacher and
MLP student model on MNIST.

A.3 Omniglot Generative Distillation Experiment

The learning rate for the Resnet-18 reasoning model was 1e-4 in our experiments. Our trained
discrete autoencoder models were of the following representation sizes: 32 variables of size 2 for
100x compression, 50 variables of size 2 for 50x compression, and 134 variables of size 2 for 10x
compression. We follow 90% multi-task training and 10% testing splits for Omniglot established in
[31].

A.4 Minimum Sum of Squared Similarities

This algorithm is trying to find a new landmark point that maximizes the determinant by finding a
point that minimizes the sum of squared similarities (MSSS). The MSSS algorithm initially randomly
chooses two points from the dataset X . It then computes the sum of similarities between the sampled
points and a subset, T , selected randomly from the remaining data points. The point with the smallest
sum of squared similarities is then picked as the next landmark data point. The procedure is repeated
until a total of m landmark points are picked.

Algorithm 1 The Minimum Sum of Squared Similarities Algorithm
1: Input: X = {x1, x2, ..., xn}: dataset
2: m: number of landmark data points
3: γ: size of the subsampled set from the remaining data, in percentage
4:
5: Output: S̃ ∈ Rm×m: similarity matrix between landmark points
6: Initialize S̃ = I0
7: For (i=0 to i<2) do
8: x̃i = Random(X)

9: S̃ := S̃∪xi

10: X̃ := X̃ ∪ {x̃i}
11: End For
12: While i < m do
13: T = Random(X\{X̃}, γ)
14: Find x̃i = argminx∈T

∑
j<i−1 sim

2(x, x̃j)

15: S̃ := S̃∪x̃i

16: X̃ := X̃ ∪ {x̃i}
17: End While

B CNN to MLP Distillation Results
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